FRONT 170x220mm ## OVERDOSE: There is no specific treatment in the event of overdose. In the event of overdose, the patient should be treated symptomatically and supportive measures instituted as required. Liver function and CK levels should be monitored. Haemodialysis is unlikely to be of benefit. **STORAGE**: Store below 30°C. Protect from light & moisture SHELF LIFE: 24 months. Date of publication/review: 04 December 2017 Presentation: ROSTAT-5: Alu-Alu Pack of 3x10 tablets ROSTAT-10: Alu-Alu Pack of 3x10 tablets ROSTAT-20: Alu-Alu Pack of 3x10 tablets Manufactured by: ATOZ Pharmaceuticals Pvt. Ltd., No.12, Balaji Nagar, Ambattur, Chennai - 600 053. INDIA. Marketed by: Innocia Lifesciences Pvt. Ltd. Block A, No.12, Balaji Nagar, Ambattur, Chennai - 600053. INDIA. PIKE03AG15 # **ROSTAT** # **Rosuvastatin Tablets** #### COMPOSITION: ROSTAT-5 Each film coated tablet contains: Rosuvastatin Calcium equivalent to Rosuvastatin 5mg #### ROSTAT-10 Each film coated tablet contains: Rosuvastatin Calcium equivalent to Rosuvastatin 10mg #### ROSTAT-20 Each film coated tablet contains: Rosuvastatin Calcium equivalent to Rosuvastatin 20mg #### LIST OF EXCIPIENTS: Microcrystalline Cellulose Maize Starch Lactose Povidone K30 Purified Talc Croscarmellose Sodium Colloidal Anhydrous Silica Magnesium Stearate Hypromellose E15 Titanium Dioxide Ponceau 4R (ROSTAT-5) Iron Oxide of Red (ROSTAT-10) Erythrosine Lake (ROSTAT-20) Isopropyl Alcohol Dichloromethane ## PHARMACODYNAMIC PROPERTIES: $Pharmacother a peutic group: HMG-CoA\ reductase\ inhibitors\ ATC\ code: C10A\ A07$ ## Mechanism of action Rosuvastatin is a selective and competitive inhibitor of HMG-CoA reductase, the rate-limiting enzyme that converts 3-hydroxy-3-methylglutaryl coenzyme A to mevalonate, a precursor for cholesterol. The primary site of action of rosuvastatin is the liver, the target organ for cholesterol lowering. Rosuvastatin increases the number of hepatic LDL receptors on the cell-surface, enhancing uptake and catabolism of LDL and it inhibits the hepatic synthesis of VLDL, thereby reducing the total number of VLDL and LDL particles. ## $Pharmacodynamic\,effects$ Rosuvastatin reduces elevated LDL-cholesterol, total cholesterol and triglycerides and increases HDL-cholesterol. It also lowers ApoB, nonHDL-C, VLDL-TG and increases ApoA-I. Rosuvastatin also lowers the LDL-C/HDL-C, total C/HDL-C and nonHDL-C/HDL-C and the ApoB/ApoA-I ratios. # PHARMACOKINETIC PROPERTIES: Absorption: Maximum rosuvastatin plasma concentrations are achieved approximately 5 hours after oral administration. The absolute bioavailability is approximately 20%. Distribution: Rosuvastatin is taken up extensively by the liver which is the primary site of cholesterol synthesis and LDL-C clearance. The volume of distribution of rosuvastatin is approximately 134 L. Approximately 90% of rosuvastatin is bound to plasma proteins, mainly to albumin. Metabolism: Rosuvastatin undergoes limited metabolism (approximately 10%). In vitro metabolism studies using human hepatocytes indicate that rosuvastatin is a poor substrate for cytochrome P450-based metabolism. CYP2C9 was the principal isoenzyme involved, with 2C19, 3A4 and 2D6 involved to a lesser extent. The main metabolites identified are he N-desmethyl and lactone metabolites. The N-desmethyl metabolite is approximately 50% less active than rosuvastatin whereas the lactone form is considered clinically inactive. Rosuvastatin accounts for greater than 90% of the circulating HMG-CoA reductase inhibitor activity. Excretion: Approximately 90% of the rosuvastatin dose is excreted unchanged in the faeces (consisting of absorbed and non-absorbed active substance) and the remaining part is excreted in urine. Approximately 5% is excreted unchanged in urine. The plasma elimination half-life is approximately 19 hours. The elimination half-life does not increase at higher doses. The geometric mean plasma clearance is approximately 50 litres/hour (coefficient of variation 21.7%). As with other HMG- # **BACK** CoA reductase inhibitors, the hepatic uptake of rosuvastatin involves the membrane transporter OATP-C. This transporter is important in the hepatic elimination of rosuvastatin. #### THERAPEUTIC INDICATIONS: Treatment of hypercholesterolaemia Adults, adolescents and children aged 6 years or older with primary hypercholesterolaemia (type IIa including heterozygous familial hypercholesterolaemia) or mixed dyslipidaemia (type IIb) as an adjunct to diet when response to diet and other non-pharmacological treatments (e.g. exercise, weight reduction) is inadequate Adults, adolescents and children aged 6 years or older with homozygous familial hypercholesterolaemia as an adjunct to diet and other lipid lowering treatments (e.g. LDL apheresis) or if such treatments are not appropriate. #### Prevention of Cardiovascular Events Prevention of major cardiovascular events in patients who are estimated to have a high risk for a first cardiovascular event, as an adjunct to correction of other risk factors. ## POSOLOGY AND MODE OF ADMINISTRATION: Before treatment initiation the patient should be placed on a standard cholesterollowering diet that should continue during treatment. The dose should be individualised according to the goal of therapy and patient response, using current consensus guidelines. Rosuvastatin may be given at any time of day, with or without food #### Paediatric population Paediatric use should only be carried out by specialists. Children and adolescents 6 to 17 years of age (Tanner Stage < II-V) Heterozygous familial hypercholesterolaemia In children and adolescents with heterozygous familial hypercholesterolaemia the usual start dose is 5 mg daily. In children 6 to 9 years of age with heterozygous familial hypercholesterolaemia, the usual dose range is 5-10 mg orally once daily. Safety and efficacy of doses greater than 10 mg have not been studied in this population. In children 10 to 17 years of age with heterozygous familial hypercholesterolaemia, the usual dose range is 5-20 mg orally once daily. Safety and efficacy of doses greater than 20 mg have not been studied in this population. # CONTRAINDICATION: Rosuvastatin is contraindicated: - in patients with hypersensitivity to rosuvastatin or to any of the excipients. - in patients with active liver disease including unexplained, persistent elevations of serum transaminases and any serum transaminase elevation exceeding 3 times the upper limit of normal (ULN). - in patients with severe renal impairment (creatinine clearance <30 ml/min). - in patients with myopathy. - in patients receiving concomitant ciclosporin. - during pregnancy and lactation and in women of childbearing potential not using appropriate contraceptive measures. The 40 mg dose is contraindicated in patients with pre-disposing factors for myopathy/rhabdomyolysis. Such factors include: - moderate renal impairment (creatinine clearance < 60 ml/min) - hypothyroidism - personal or family history of hereditary muscular disorders - previous history of muscular toxicity with another HMG-CoA reductase inhibitor or fibrate - alcohol abuse - situations where an increase in plasma levels may occur - Asian patients - concomitant use of fibrates. ## SPECIAL WARNINGS AND PRECAUTIONS FOR USE: Renal Effects Proteinuria, detected by dipstick testing and mostly tubular in origin, has been observed in patients treated with higher doses of Rosuvastatin, in particular 40 mg, where it was transient or intermittent in most cases. Proteinuria has not been shown to be predictive of acute or progressive renal disease. The reporting rate for serious renal events in post-marketing use is higher at the 40 mg dose. An assessment of renal function should be considered during routine follow-up of patients treated with a dose of 40 mg. ## Skeletal Muscle Effects $Effects \, on \, skeletal \, muscle \, e.g. \, my algia, \, my opathy \, and, \, rarely, \, rhabdomy olysis \, have \,$ been reported in Rosuvastatin-treated patients with all doses and in particular with doses > 20 mg. Very rare cases of rhabdomyolysis have been reported with the use of ezetimibe in combination with HMG-CoA reductase inhibitors. A pharmacodynamic interaction cannot be excluded and caution should be exercised with their combined use. # INTERACTION WITH OTHER MEDICINAL PRODUCTS AND OTHER FORMS OF INTERACTION: Effect of co-administered medicinal products on rosuvastatin Transporter protein inhibitors: Rosuvastatin is a substrate for certain transporter proteins including the hepatic uptake transporter OATP1B1 and efflux transporter BCRP. Concomitant administration of Rosuvastatin with medicinal products that are inhibitors of these transporter proteins may result in increased rosuvastatin plasma concentrations and an increased risk of myopathy. Ciclosporin: During concomitant treatment with Rosuvastatin and ciclosporin, rosuvastatin AUC values were on average 7 times higher than those observed in healthy volunteers. Rosuvastatin is contraindicated in patients receiving concomitant ciclosporin. $Concomitant\ administration\ did\ not\ affect\ plasma\ concentrations\ of\ ciclosporin.$ Protease inhibitors: Although the exact mechanism of interaction is unknown, concomitant protease inhibitor use may strongly increase rosuvastatin exposure. For instance, in a pharmacokinetic study, co-administration of 10 mg rosuvastatin and a combination product of two protease inhibitors (300 mg atazanavir/100 mg ritonavir) in healthy volunteers was associated with an approximately three-fold and seven-fold increase in rosuvastatin AUC and Cmax respectively. The concomitant use of Rosuvastatin and some protease inhibitor combinations may be considered after careful consideration of Rosuvastatin dose adjustments based on the expected increase in rosuvastatin exposure. Gemfibrozil and other lipid-lowering products: Concomitant use of Rosuvastatin and gemfibrozil resulted in a 2-fold increase in rosuvastatin Cmax and AUC. Based on data from specific interaction studies no pharmacokinetic relevant interaction with fenofibrate is expected, however a pharmacodynamic interaction may occur. Gemfibrozii, fenofibrate, other fibrates and lipid lowering doses (> or equal to 1g/day) of niacin (nicotinic acid) increase the risk of myopathy when given concomitantly with HMG-CoA reductase inhibitors, probably because they can produce myopathy when given alone. The 40 mg dose is contraindicated with concomitant use of a fibrate. These patients should also start with the 5 mg dose. Erythromycin: Concomitant use of Rosuvastatin and erythromycin resulted in a 20% decrease in AUC and a 30% decrease in Cmax of rosuvastatin. This interaction may be caused by the increase in gut motility caused by erythromycin. ## PREGNANCY AND LACTATION: Rosuvastatin is contraindicated in pregnancy and lactation. Women of child bearing potential should use appropriate contraceptive measures. Since cholesterol and other products of cholesterol biosynthesis are essential for the development of the foetus, the potential risk from inhibition of HMG-CoA reductase outweighs the advantage of treatment during pregnancy. Animal studies provide limited evidence of reproductive toxicity. If a patient becomes pregnant during use of this product, treatment should be discontinued immediately. Rosuvastatin is excreted in the milk of rats. There are no data with respect to excretion in milk in humans. ## EFFECTS ON ABILITY TO DRIVE AND USE MACHINES: Studies to determine the effect of Rosuvastatin on the ability to drive and use machines have not been conducted. However, based on its pharmacodynamic properties, Rosuvastatin is unlikely to affect this ability. When driving vehicles or operating machines, it should be taken into account that dizziness may occur during treatment. # UNDESIRABLE EFFECTS: Renal Effects: Proteinuria, detected by dipstick testing and mostly tubular in origin, has been observed in patients treated with Rosuvastatin. Shifts in urine protein from none or trace to ++ or more were seen in <1% of patients at some time during treatment with 10 and 20 mg, and in approximately 3% of patients treated with 40 mg. A minor increase in shift from none or trace to + was observed with the 20 mg dose. In most cases, proteinuria decreases or disappears spontaneously on continued therapy. Review of data from clinical trials and post-marketing experience to date has not identified a causal association between proteinuria and acute or progressive renal disease. Haematuria has been observed in patients treated with Rosuvastatin and clinical trial data show that the occurrence is low. Skeletal muscle effects: Effects on skeletal muscle e.g. myalgia, myopathy (including myositis) and, rarely, rhabdomyolysis with and without acute renal failure have been reported in Rosuvastatin-treated patients with all doses and in particular with doses > 20 mg.